Усилитель звука на транзисторах – Своими Руками
Транзисторные УНЧ
Транзисторные усилители мощности низкой частоты (УМЗЧ) для звуковой и аудио-аппаратуры. В разделе собраны принципиальные схемы самодельных усилителей мощности НЧ на биполярных и полевых транзисторах.
Здесь вы найдете схемы транзисторных усилителей разной сложности и с разным классом мощности:
- низкой мощности – до 1,5 Ватт;
- средней мощности – от 1,5 Ватт до 20 Ватт;
- большой мощности – 25 Ватт, 50 Ватт, 100 Ватт, 200 Ватт, 300 Ватт и более.
Для самодельного аудио-комплекса или при ремонте музыкального центра можно изготовить многоканальный усилитель мощности в конфигурациях:
- система 2.1 (сабвуфер + 2 сателлита);
- система 5.1 (сабвуфер + 5 сателлитов);
- стерео – два канала усиления;
- квадро – четыре канала усиления.
На транзисторах можно без лишних сложностей собрать небольшой самодельный усилитель для наушников. Присутствуют очень простые и доступные по себестоимости конструкции усилителей, которые прекрасно подойдут для изготовления начинающими радиолюбителями.
Усилитель построен по простой схеме на трех транзисторах. На выходе, на нагрузке сопротивлением 4 От выдает мощность 2W при питании от источника напряжением 12V. Входное сопротивление усилителя мало, и составляет 470 Ом. Столь малое входное сопротивление позволяет ему хорошо согласовываться .
Схема самодельного гибридного усилителя звука на лампах и микросхемах с выходной мощностью 30 Ватт. Усилитель построен на лампе ECC88 (отечественный аналог – 6Н23П) и мощной микросхеме LM3875.
Принципиальная схема гитарного усилителя мощности низкой частоты с предусилителем и темброблоком. УМЗЧ собран на транзисторах TIP142 и TIP147, выходная мощность – 40Вт на 8 Ом, 60 Вт на 4 Ома.
Несколько принципиальных схем высококачественных УМЗЧ на полевых транзисторах, привлекающие своей простотой и техническими характеристиками. Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы.
Схема электрическая принципиальная усилителя приведена на рисунке (в скобках приведены замененные элементы). Данная конструкция является модернизациейразработки [1]. Принципиальная схема УМЗЧ на MOSFET транзисторах (200Вт). Все основные части усилителя – трансформатор, радиаторы .
При разработке усилителей ЗЧ с максимальной выходной мощностью более 100 Вт первостепенноезначение приобретает необходимость получения возможно большего КПД усилителя при достаточно малых нелинейных искажениях. Вопрос о допустимом проценте нелинейных искажений усилителя ЗЧ не раз обсуждался на .
Свое знакомство с мощными усилителями я начал в 1958 году, когда учился в энергетическомтехникуме, и мне поручили обслуживать радиоузел. Он состоял из трех частей: малогабаритной радиотрансляционной установки “ТУ-100″, магнитофона “Днепр 9” и ЛАТРа на .
Уже давно разработчики УМЗЧ задают себе вопрос: до какого уровня необходимо снижать нелинейность усилителя? [1-3]. Если проанализировать рекламные журналы по аудиотехнике, то гармонические искажения даже “топовых” моделей УМЗЧ в основном лежат в диапазоне 0,003. 0,05% .
Всем доброго времени суток! Вот с чем я осмелюсь с Вами поделиться. Тема для многих известна, и понятна. В чём она состоит. Дальше чисто моё ИМХО. Давно любителям звука внушают – если лампы, то в любом проявлении, а если транзисторы, то чтобы их было o-очень много! Иначе лапового звука не добьёшься. Например советские стандарты сначала классифицировали аудио-аппаратуру по кассам 4-й, 3-й, 2-й, 1-й!, и наконец.
Принципиальная схема простого трехтранзисторного усилителя мощности для применения в разнообразной малогабаритной аппаратуре. Зачастую, от «компьютерных колонок» требуется только воспроизведение каких-то звуковых сигналов, речевых сигналов, не требующих HI-FI или Hl-end качества .
Схема усилителя звука на одном транзисторе
Усилитель звуковой частоты является важнейшим узлом многих электронных устройств. Это может быть воспроизведение музыкальных файлов, системы оповещения пожарной и охранной сигнализации или звуковые датчики различных игрушек. Бытовая техника оснащена встроенными низкочастотными каналами, но при домашнем конструировании электронных самоделок может потребоваться необходимость сделать это устройство самостоятельно.
Схема усилителя звука на транзисторах своими руками
Диапазон звуковых частот, которые воспринимаются человеческим ухом, находится в пределах 20 Гц-20 кГц, но устройство, выполненное на одном полупроводниковом приборе, из-за простоты схемы и минимального количества деталей обеспечивает более узкую полосу частот. В простых устройствах, для прослушивания музыки достаточно частотного диапазона 100 Гц-6 000 Гц. Этого хватит для воспроизведения музыки на миниатюрный динамик или наушник. Качество будет средним, но для мобильного устройства вполне приемлемым.
Схема простого усилителя звука на транзисторах может быть собрана на кремниевых или германиевых изделиях прямой или обратной проводимости (p-n-p, n-p-n). Кремниевые полупроводники менее критичны к напряжению питания и имеют меньшую зависимость характеристик от температуры перехода.
Схема усилителя звука на 1 транзисторе
Простейшая схема усилителя звука на одном транзисторе включает в себя следующие элементы:
- Транзистор КТ 315 Б
- Резистор R1 – 16 ком
- Резистор R2 – 1,6 ком
- Резистор R3 – 150 ом
- Резистор R4 – 15 ом
- Конденсатор С1 – 10,0 мкф
- Конденсатор С2 – 500,0 мкф
Это устройство с фиксированным напряжением смещения базы, которое задаётся делителем R1-R2. В цепь коллектора включен резистор R3, который является нагрузкой каскада. Между контактом Х2 и плюсом источника питания можно подключить миниатюрный динамик или наушник, который должен иметь большое сопротивление. Низкоомную нагрузку на выход каскада подключать нельзя. Правильно собранная схема начинает работать сразу и не нуждается в настройке.
Схема усилителя звуковой частоты
Более качественный УНЧ можно собрать на двух приборах.
Схема усилителя на двух транзисторах включает в себя больше комплектующих элементов, но может работать с низким уровнем входного сигнала, так как первый элемент выполняет функцию предварительного каскада.
Переменный сигнал звуковой частоты подаётся на потенциометр R1, который играет роль регулятора громкости. Далее через разделительный конденсатор сигнал подаётся на базу элемента первой ступени, где усиливается до величины, обеспечивающей нормальную работу второй ступени. В цепь коллектора второго полупроводника включен источник звука, которым может быть малогабаритный наушник. Смещение на базах задают резисторы R2 и R4. Кроме КТ 315 в схеме усилителя звука на двух транзисторах можно использовать любые маломощные кремниевые полупроводники, но в зависимости от типа применяемых изделий может потребоваться подбор резисторов смещения.
Если использовать двухтактный выход можно добиться хорошего уровня громкости и неплохой частотной характеристики. Данная схема выполнена на трёх распространённых кремниевых приборах КТ 315, но в устройстве можно использовать и другие полупроводники. Большим плюсом схемы является то, что она может работать на низкоомную нагрузку. В качестве источника звука можно использовать миниатюрные динамики с сопротивлением от 4 до 8 ом.
Устройство можно использовать совместно с плеером, тюнером или другим бытовым прибором. Напряжение питания 9 В можно получить от батарейки типа «Крона». Если в выходном каскаде использовать КТ 815, то на нагрузке 4 ома можно получить мощность до 1 ватта. При этом напряжение питания нужно будет увеличить до 12 вольт, а выходные элементы смонтировать на небольших алюминиевых теплоотводах.
Схема простого усилителя звука на одном транзисторе
Получить хорошие электрические характеристики в усилителе, собранном на одном полупроводнике практически невозможно, поэтому качественные устройства собираются на нескольких полупроводниковых приборах. Такие конструкции дают на низкоомной нагрузке десятки и сотни ватт и предназначены для работы в Hi-Fi комплексах. При выборе устройства может возникнуть вопрос, на каких транзисторах можно сделать усилитель звука. Это могут быть любые кремниевые или германиевые полупроводники. Широкое распространение получили УНЧ, собранные на полевых полупроводниках. Для устройств малой мощности с низковольтным питанием можно применить кремниевые изделия КТ 312, КТ 315, КТ 361, КТ 342 или германиевые старых серий МП 39-МП 42.
Усилитель мощности своими руками на транзисторах можно выполнить на комплементарной паре КТ 818Б-КТ 819Б. Для такой конструкции потребуется предварительный блок, входной каскад и предоконечный блок. Предварительный узел включает в себя регулировку уровня сигнала и регулировку тембра по высоким и низким частотам или многополосный эквалайзер. Напряжение на выходе предварительного блока должно быть не менее 0,5 вольта. Входной узел блока мощности можно собрать на быстродействующем операционном усилителе. Для того чтобы раскачать оконечную часть потребуется предоконечный каскад, который собирается на комплементарной паре приборов средней мощности КТ 816-КТ 817. Конструкции мощных усилителей низкой частоты отличаются сложной схемотехникой и большим количеством комплектующих элементов. Для правильной регулировки и настройки такого блока потребуется не только тестер, но осциллограф, и генератор звуковой частоты.
Современная элементная база включает в себя мощные MOSFET приборы, позволяющие конструировать УНЧ высокого класса. Они обеспечивают воспроизведение сигналов в полосе частот от 20 Гц до 40 кГц с высокой линейностью, коэффициент нелинейных искажений менее 0,1% и выходную мощность от 50 W и выше. Данная конструкция проста в повторении и регулировке, но требует использования высококачественного двухполярного источника питания.
Усилитель звука на транзисторах #1
Усилитель звука относится к одному из наиболее интересных электронных устройств для начинающих электронщиков или радиолюбителей. И это не удивительно, ведь если устройство собрано правильно, то достаточно подключить динамик и сразу же раздастся звук, оповещающий о том, что усилитель мощности работает. Наличие звука приносить радость успешного завершения сборки усилителя звука своими руками, а его отсутствие – разочарование. Поэтому цель данной статьи – принести радость начинающему электронщику. Но сначала все по порядку…
Усилитель мощности на транзисторах. Базовые положения
Усилитель мощности на транзисторах присутствует в том или ином виде во многих электронных устройствах. Особенно ярко выделено его применение в звуковой технике.
Современный мир электроники полностью опутан различными запоминающими устройствами: флешки, жесткие диски и т.п. Для воспроизведения информации, хранящейся в памяти накопителей, нужно, прежде всего, преобразовать и усилить ее сигналы.
Главное назначение любого усилителя состоит в преобразовании маломощного сигнала в более мощный. При этом форма его должна сохраняться и не искажаться в процессе преобразования. Иначе произойдет частичная или полная утеря информации.
Начинающим электронщикам следует помнить очень важный момент. Усиление происходит не за счет каких-либо магических свойств транзистора, а за счет энергии блока питания. Транзистор лишь управляет потоком мощности от источника питания к нагрузке. Причем он выполняет свою работу в нужные моменты времени. Отсюда становится понятно, что мощность на нагрузке ограничена лишь мощностью блока питания. Если нагрузка, например динамик, имеет мощность 10 Вт, а источник тока способен выдать только 5 Вт, то нагрузка будет способна развить только 5 Вт.
Структура усилителя состоит из источника и узла, согласующего входной сигнал с источником тока. Такое согласование позволяет получить выходной сигнал.
Устройство транзистора
Поскольку главным элементом усилителя является транзистор, то рассмотрим вкратце устройство и принцип работы это полупроводникового прибора.
Среди довольно обширного выбора полупроводниковых приборов, как по характеристикам, так и по принципу действия, в данной статье мы рассмотрим, и будем применять исключительно биполярные транзисторы (БТ).
Такой электронный прибор состоит из полупроводникового кристалла и трех, подсоединенных к нему электродов. Вся конструкция помещается в корпус, который защищает прибор от разных внешних воздействий (пыль, влага и т.п.). От корпуса отходят три вывода: база (Б), коллектор (К) и эмиттер (Э).
Существуют принципиально два типа БТ n-p-n и p-n-p структуры. Принцип работы их аналогичен, а отличие состоит лишь в полярности подключения к их выводам источника питания и радиоэлектронных элементов, имеющих полярность, например электролитических конденсаторов.
Биполярный транзистор имеет два pn-перехода, поэтому конструктивно его можно рассматривать, как два последовательно встречно соединенных диода. Точка соединения диодов аналогична базе. Но если взять два любых диода и соединить их соответствующим образом, то в такой конструкции не будут проявляться усилительные свойства. Причина в том, что у «настоящего» транзистора слишком малое расстояние между различными полупроводниковыми структурами (база-эмиттер, база-коллектор). Расстояние равно единицам микрометра, то есть несколько тысячных миллиметра (1мкм = 0,001 мм = 0,000001 м). Именно за счет малого расстояния получается транзисторный эффект.
Как работает биполярный транзистор (БТ)
Принцип работы БТ упрощенно рассмотрим на примере ниже приведенной схемы.
Базу оставим не подключенной либо соединим ее с минусом источника питания. Последний вариант более предпочтительный, поскольку исключает появление наводок на выводе.
Чтобы исключить короткое замыкание в цепь коллектора следует установить резистор Rн, он же будет служить нагрузкой. Однако при подключении источника питания Uип, ток в цепи VT и Rн протекать не будет (обратный ток мы не берем в счет, поскольку его значение слишком мало и не превышает единиц микроампер). Отсутствие тока в цепи поясняется тем, что транзистор закрыт. И если вернуться к аналогии с диодом, то мы заметим, что один из них находится под обратным напряжением, поэтому он заперт.
Открыть БТ не составит большого труда. Следует на базу относительно эмиттера (для n-p-n структуры) приложить положительный потенциал, то есть подать напряжение, например от другого источника питания – батарейки. Величина напряжения должна быть порядка 0,6 В, чтобы скомпенсировать падение напряжения на эмиттерном переходе. Резистор Rб служит для ограничения тока, протекающего в цепи базы.
Таким образом, если подать небольшое напряжение на базу, то в цепи нагрузки Rн будет протекать ток коллектора Iк. При смене полярности блока питания VT закроется. Чтобы не запутаться и правильно подключать источник питания следует обратить внимание на направление стрелки эмиттера. Она указывает на направление протекания токов Iк и Iб. Для БТ n-p-n типа Iк и Iб входят в эмиттер, а для p-n-p – выходят.
Коэффициент усиления транзистора
Токи базы Iб и коллектора Iк находятся в тесной взаимосвязи. Более того, величина тока, протекающего в цепи коллектора помимо параметров Uип и Rн определяются величиной Iб в прямопропорциональной зависимости. Отношение Iк к Iб называется коэффициентом усиления транзистора по току и обозначается буквой β («бета»):
Коэффициент усиления является одним из важнейших параметров БТ и всегда приводится в справочниках. Для большинства маломощных БТ он находится в диапазоне 50…550 единиц. В общем, β показывает во сколько раз ток коллектора больше тока базы.
Усилитель звука на транзисторах
Усилитель звука на транзисторах предназначен для повышения мощности сигнала звуковой частоты, поэтому его еще называют усилитель мощности звуковой частоты или сокращенно УМЗЧ. Источником звука, подлежащего усилению, чаще всего служит микрофон или выход звуковой карты компьютера, ноутбука, смартфона и т.п. Мощность таких источников довольно низкая и составляет микроватты, а для нормальной работы динамика (громкоговорителя) необходимо обеспечить мощность единицы и десятки ватт, а то и сотни ватт. Поэтому главной задачей УМЗЧ является повышение мощности слабого входного сигнала в тысячи и десятки тысяч раз.
Звуки раздающейся мелодии или речи имеют сложный характер. Однако любой из них, даже самой сложной формы можно разложить в ряд сигналов синусоидальной формы, отличающихся как по частоте, так и по амплитуде.
Поэтому с целью упростить пояснение принципа работы схемы УМЗЧ будем применять входной сигнал синусоидальной формы uc. Нагрузкой на первых порах вместо динамика буде служить резистор Rн.
Однако приведенная выше схема применяется лишь для работы БТ в ключевом режиме, то есть когда полупроводниковый прибор VT находится в двух фиксированных состояниях – открытом и закрытом. Для усиления переменного сигнала данная схема непригодна, поскольку будет усиливаться только положительная полуволна входного сигнала. Для отрицательной полуволны транзистор будет закрыт. Кроме того, амплитуда входного сигнала должна быть не меньше 0,6 В, иначе просто останется незамеченным, поскольку не откроется эмиттерный переход.
Базовая схема входного каскада УМЗЧ
Чтобы схема УМЗЧ работала правильно, а это означает, усиливала без искажений положительные и отрицательные полуволны, изначально следует приоткрыть VT наполовину. Тогда положительная полуволна будет еще больше открывать БТ, а отрицательная – призакрывать его.
Приоткрыть БТ можно небольшим напряжением, поданным на базу, оно же называется напряжением смещения. Сам процесс называют установкой рабочей точки транзистора по постоянному току. Напряжение смещения зачастую подается от общего источника питания через токоограничивающий резистор Rб, согласно схемы, приведенной ниже.
Чтобы постоянное напряжение не воздействовало на источник переменного сигнала, а также не нарушался режим работы схемы по постоянному току, переменная составляющая отделяется конденсатором С1, а нагрузка подключается к коллектору через разделительный конденсатор C2 к клеммам uвых.
Правильная установка или настройка рабочей точки транзисторного усилителя звука имеет ключевое значение, поскольку если ее установить неверно, то выходной сигнал будет иметь искажения либо вовсе отсутствовать. Чтобы установить рабочую точку пользуются выходной статической характеристикой биполярного транзистора. Она характеризует зависимость тока в цепи коллектора от приложенного напряжения между выводами коллектор-эмиттер при разных значениях тока базы. На данной характеристике располагается нагрузочная прямая, на которой выделяют три участка: 1-2, 2-3 и 3-4. Участок 1-2 называется областью отсечки – здесь БТ полностью закрыт; 3-4 – область насыщения – БТ полностью открыт; 2-3 – активная область – здесь БТ находится в приоткрытом состоянии. Участки 1-2 и 3-4 используются для работы транзистора в ключевом режиме. Активный участок 2-3 соответствует работе БТ в режиме усиления. Именного на него ориентируются при настройке рабочей точки.
Расчет параметров элементов усилителя мощности
Расчет основных параметров усилителя мощности начинается с определения сопротивления резистора, который находится в цепи коллектора Rк. Чтобы его посчитать, согласно закону Ома понадобится прежде определить падение напряжения на нем URк и ток Iк:
Напряжение URк принимают из таких соображений, чтобы на полуоткрытом транзисторе оно было, равное половине напряжения источника питания Uип. Это соответствует половине нагрузочной прямой на выходной статической характеристике – точке А.
Если рабочая точка будет находится значительно выше или ниже точки А, например А1 или А2, то выходной сигнал с усилителя будет искажаться. Произойдет срез его нижних или верхних полуволн, что отразится на ухудшении качества звука. Поэтому стоит придерживаться средней точки – т. А. Однако это не всегда оправдано, особенно для сигналов очень низкой мощности. В таком случае рабочую точку принимают насколько ниже т. А, что позволяет снизить потребление электроэнергии без искажения формы выходного сигнала.
В нашем случае будем опираться на точку А. Примем напряжение источника питания Uип = 9 В (батарейка «крона»). Тогда напряжение на резисторе Rк равно:
Коллекторный ток, называемый током покоя коллектора, принимают для расчетов 0,8…1,2 мА. Возьмем среднее значение 1 мА = 0,001 А.
Сопротивление Rк равно:
Примем ближайший стандартный номинал резистора 4,7 кОм.
Теперь определит сопротивление в цепи базы Rб:
Коэффициент усиления БТ легко и с достаточной точность можно определить мультиметром. Для pn2222 я определил значение 170 единиц.
Более точную установку тока покоя коллектора устанавливают переменным резистором, включенным в цепь базы и изменяют его до тех пока, пока значение Iк станет равным 1мА. При этом ориентируются на показания миллиамперметра, установленного в цепь коллектора.
Ниже приведены схемы входных каскадов усилителей с полупроводниковыми приборами разной структуры.
Расчет емкости конденсаторов усилителя мощности звуковой частоты (УМЗЧ)
При расчете УМЗЧ следует обратить внимание на емкость развязывающих конденсаторов С1 и С2. Если их принять слишком малыми, то плохо будут проходить токи низкой частоты. Поэтому емкость можно определить по следующему выражению:
где fн – нижняя граница частоты сигнала, Гц. Для УНЧ как правило принимают 20 Гц – нижний порог слышимости человеческого уха;
Rвх – входное сопротивление следующего каскада или нагрузки. Для усилителей, в которых применяется БТ, включенный по схеме с общим эмиттером это сопротивление равняется нескольким килоом. Примем Rвх = 4,7 кОм = 4700 Ом.
Таким образом емкости конденсаторов С1 и С2 следует принимать не менее 10 мкФ.
Однако рассмотренная выше схема усилителя звука имеет недостаток, который исключает применение ее в таком виде в электронных устройствах. В схеме отсутствует температурная стабилизация, поэтому любые изменение температуры могут привести к искажению формы выходного сигнала. Устранение данного недостатка и причины его возникновения подробно рассмотрено в следующей статье.
Источники:
http://radiostorage.net/5-usiliteli-na-tranzistorah/
http://dinamikservis.ru/blog/usiliteli-zvuka/skhema-usilitelya-zvuka-na-odnom-tranzistore/
http://diodov.net/usilitel-zvuka-na-tranzistorah-1/