Лабораторный блок питания — Своими Руками

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Читать еще:  Игольница в виде Бабы-яги - Своими Руками

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Лабораторный блок питания своими руками 1,3-30В 0-5А

Дата: 12.02.2016 // 0 Комментариев

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В. Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток. Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Лабораторный блок питания своими руками 1,3-30В 0-5А

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Читать еще:  Мягкий стульчик из пластиковых бутылок - Своими Руками

Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2. Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Лабораторный блок питания 30в 5а, результат

Плата управления собранная на макетке.

Плата основного диодного моста.

Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.

Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.

Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.

Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.

Демонстрация работы:

В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.

Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…

Работы наших читателей

Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.

    Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.

Лабораторный блок питания собрал своими руками Виктор. Трансформатор: взял с бесперебойника. Транзисторы: пара TIP36C. На выходе: ток до 5А.

Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.

Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.

Читать еще:  Топиарий из салфеток - Своими Руками

Самодельный лабораторный блок питания от Валерия. Трансформатор: ТПП-307: пара TIP36C. На выходе: ток до 3,6А. Из за проблем с трансформатором, выжать больше не получилось.

Еще один лабораторный блок питания от Алексея. Трансформатор: ТПП-312: Силовые транзисторы пара TIP36C. На выходе: ток до 5,5А. Из за небольшой ошибки в трассировке дорожек этот БП занял у Алексея очень много времени и сил.

Свой лабораторный блок питания, который собран по нашей схеме, прислал нам Сергей. Транзисторы: пара TIP36C. Трансформатор: перемотанный трансформатор от UPS. Отдельно хотелось отметить, что такой трансформатор без перемотки не хотел корректно работать в БП. Дополнительно Сергей модифицировал свой блок питания, а именно оснастив его системой автоматической регулировки оборотов вентилятора, снятой со старого компьютерного блока питания. Стоимость блока получилась примерно в 2700 руб.

Этот лабораторный блок питания мы получили от Александра. Во время сборки Александр не однократно сталкивался с различными проблемами, не смог подружить пару транзисторов и не сразу разобрался с питанием LM301. Но благополучно их решил и не стал опускать руки. Транзисторы: пара TIP36C. Трансформатор: ТПП 322. На выходе 30В и 5А.

Такой блок мы получили от Андрея. Выдает 19,5-20 В и 5 А. Порог установлен на 4,5 А. Хотя однако трансформатор может намного больше (32 В; 6 А). Добавлены последовательно к переменным резисторам еще по одному, номиналом 10% от базового. Транзисторы: пара TIP36C. Трансформатор: тороидальный от радиолы.

Лабораторный блок питания своими руками

Сегодня вы узнаете как собрать надёжный лабораторный блок питания с регулировкой тока и напряжения. Использоваться будут готовые компоненты и модули, поэтому, если следовать схеме и инструкции, сложностей в сборке возникнуть не должно. Основным компонентом в схеме, будет модуль DC-DC преобразователя, который можно приобрести на Алиэкспресс, все ссылки будут в конце статьи.

Основные характеристики DC-DC преобразователя:

— Входное напряжение 5 — 40 Вольт;

— Выходное напряжение 1.2 — 35 Вольт;

— Выходной ток (мах) 9 Ампер, желательно установить кулер.

Схема блока питания:

Как уже говорилось выше, схема простая, сетевое напряжение поступает на трансформатор, имеется сетевой выключатель и предохранитель, напряжение понижается трансформатором, верхняя честь схемы силовая. Переменное напряжение поступает на диодный мост и сглаживающий конденсатор. Далее поступает на DC-DC преобразователь, с преобразователя напряжение поступает на выходные клеммы. Минус схемы разрывается приборчиком, для удобства, регулировочные резисторы вынесены с платы.

Нижняя предназначена для питания вольтамперметра. Трансформатор имеет отдельную обмотку, как и с силовой обмоткой, переменное напряжение поступает на диодный мост и фильтрующий конденсатор. Далее установлен линейный стабилизатор на 5 Вольт.

Со схемой разобрались, теперь переходим к компонентам.

Корпусом лабораторного блока питания будет служить старый корпус от регулятора паяльника. Регулятор паяльника еще времен СССР, очень добротный.

Передняя панель будет из композитного пластика. Состоит пластик из двух пластин алюминия и пластика между ним, с одной стороны, он белый, с второй черный. Черная сторона будет лицевой.

Понижающий трансформатор от старого оборудования, уже не помню какого. Его пришлось слегка доработать, сделал отвод на 22 Вольта, полная обмотка на 27 Вольт. Если оставить, то после диодного моста напряжение более 30 Вольт. Это много для стабилизатора 7805, установленного на DC-DC преобразователе. Он питает операционный усилитель схемы. Хоть и заявлено 40 Вольт, при учете максимального для 7805 в 30 Вольт.

Понижающий преобразователь постоянного тока.

Источники:

http://sdelaitak24.ru/%D1%80%D0%B5%D0%B3%D1%83%D0%BB%D0%B8%D1%80%D1%83%D0%B5%D0%BC%D1%8B%D0%B9-%D0%B1%D0%BB%D0%BE%D0%BA-%D0%BF%D0%B8%D1%82%D0%B0%D0%BD%D0%B8%D1%8F-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA/
http://diodnik.com/laboratornyj-blok-pitaniya-svoimi-rukami-13-30v-0-5a/
http://pikabu.ru/story/laboratornyiy_blok_pitaniya_svoimi_rukami_6188165

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector