Электронный десульфатор – Своими Руками
Поделки своими руками для автолюбителей
Схема для восстановления автомобильного аккумулятора
Всем привет, вы давно просите написать статью про устройство для восстановления автомобильных, свинцово-кислотных аккумуляторов. Наверное любой автолюбитель сталкивался с явлением, когда аккумулятор полежав некоторое время без дела, перестает отдавать номинальную ёмкость.
Крутит стартёр полсекунды затем задыхается, но напряжение на нём нормальное — 12 вольт, в этом случае в народе часто говорят «аккумулятор не держит ток», с этим может столкнулся каждый.
Но почему это происходит?
Автомобильный аккумулятор состоит из свинцовых пластин находящихся в растворе электролита, в данном случае электролитом является серная кислота. Процесс заряда и разряда аккумулятора не что иное, как окислительно-восстановительный процесс.
Протекает химическая реакция в ходе которой, свинцовая пластина вступает в реакцию с оксидами на соседней пластине.
В ходе данной реакции образуются сульфаты, которыми со временем обрастают пластины, сульфаты препятствуют протеканию тока, так как являются плохим проводником и со временем аккумулятор теряет ёмкость и не способен отдавать большой ток для работы стартёра.
Если ваш аккумулятор заряжается и разряжается быстрее чем раньше, не имея при этом механических повреждений, скорее всего сульфатация убила его, но отчаиваться не стоит, читаем статью до конца…
Предлагаемое устройство, отныне — «десульфатор» создаёт короткие импульсы высокой амплитуды и чистоты, импульс длится определённое время, затем простой, затем снова импульс.
Такие ударные процессы могут разрушить сульфатную плёнку и в теории это возможно, на практике не все аккумуляторы удаётся восстановить, из-за конструктивных особенностей последних. Но судя по статистике, около 80-85 % старых аккумуляторов подлежат восстановлению. Естественно если причиной неработоспособности является сульфатация, а не обрыв свинцовых пластин или иное механическое повреждение.
Вот такое получится устройство…
Как пользоваться устройством? Данный вариант является зарядно-десульфатирующим устройством, обычный десульфатор питается от аккумулятора, который он десульфатирует и постепенно разряжает его, в этом же случае устройство заряжает аккумулятор короткими всплесками высокого напряжения высокой частоты.
Схему можно использовать и для зарядки низковольтных, свинцовых аккумуляторов с номинальным напряжением в 4-6 вольт, такие ставят в китайские фонарики, в детские электрокары и так далее…
Схема изначально создана для зарядки аккумуляторов малой ёмкости, но её успешно используют и для десульфатации автомобильных аккумуляторов.
Перед тем, как начать процесс заряда с десульфатацией, нужно слегка подзарядить автомобильный аккумулятор. Для начала нужно найти любой источник питания или зарядное устройство с напряжением от 8 до 12 вольт и подключить его на вход десульфатора.
Но не напрямую, а через лампу накаливания 12 вольт с мощностью в 21 ватт, чтобы не превысить ток заряда.
К выходу прибора подключается аккумулятор, который нужно восстановить, ну и в принципе всё.
Так, как прибор работает в звуковом диапазоне, вы скорее всего услышите слабый свист, силовые компоненты схемы слегка должны нагреваться.
Осциллографом можно убедиться, что аккумулятор заряжается импульсами тока высокой частоты.
Схема устройства довольно простая…
Простыми словами поясню как работает схема.
Напряжение зарядного устройства через предохранитель и диод поступает на схему десульфатора, для маломощной части схемы, питание подаётся через токоограничивающий резистор R1, затем сглаживается небольшим электролитическим конденсатором.
На микросхеме NE555 собран генератор прямоугольных импульсов, частота этих импульсов около 1 килогерц, коэффициент заполнения 90%, то есть сигнал высокого уровня длится большУю часть времени, именно этот импульс нам нужен для того, чтобы открыть полевой транзистор. Но проблема заключается в том, что при подаче такого импульса на полевой транзистор он большую часть времени будет находиться в открытом состоянии и лишь 10% в закрытом, это приведёт к тому, что транзистор будет прокачивать слишком большой ток и как следствие мы получим сильный нагрев всех силовых элементов и большое потребление тока всей схемы в целом.
Это неэффективно и может навредить аккумулятору. Один из вариантов — это снижение длительности сигнала высокого уровня, тогда транзистор будет открыт на короткое время и всё станет на свои места. Но к сожалению в таком включении конструктивные особенности таймера NE555 не позволяют сделать этого, так как же быть?
Микросхема CD4049 представляет из себя логику, которая содержит в своём составе 6 логических инверторов «не», каждый инвертор имеет один вход и один выход, их задача «отрицание». Если на вход поступает высокий уровень, на выходе получаем обратное, иначе говоря инвертированный или перевёрнутый сигнал.
Полевой транзистор 10 % времени у нас открыт, 90% закрыт, открываясь он замыкает дроссель на массу питания, в дросселе накапливается некоторая назовём это энергией, а когда транзистор закрыт цепь разрывается и за счёт явления самоиндукции, которая свойственна индуктивным нагрузкам, дроссель отдаёт накопленную энергию.
Это кратковременный всплеск напряжения с высокой амплитудой, притом напряжение самоиндукции в разы выше напряжения питания, этот всплеск напряжения выпрямляется и подается на аккумулятор.
Процесс происходит больше тысячи раз в секунду, то есть на аккумулятор подаются кратковременные импульсы высокого напряжения с высокой частотой, именно это и разрушает сульфатную плёнку.
Я подключил на вход схемы накопительный конденсатор и стало ясно, что амплитудное значение выходного напряжения при питания от источника 12 вольт доходит до 70-75 вольт и зависит исключительно от индуктивности накопительного дросселя.
В схеме задействован предохранитель и ещё один выпрямительный диод.
Предохранитель защищает десульфатор при случайных коротких замыканиях на выходе,
а диод выполняет несколько функций: во-первых защищает схему, если вы случайно её подключите к зарядному устройству неправильно… и во-вторых защищает зарядное устройство от всевозможных импульсных помех и всплесков напряжения, которые образуются на плате десульфатора.
Я думаю все поняли как это работает.
О компонентах…
Ну с таймером и логикой думаю всё понятно, в моём случае они установлены на панельке для безпаечного монтажа, но вам советую после проверки схемы запаять их напрямую.
Полевой транзистор IRF3205 или любые другие n-канальные с напряжением от 60 до 200 вольт и с током от 30 ампер.
Транзистор советую установить на небольшой радиатор.
Дроссель имеет индуктивность около 200 микрогенри, намотан на кольце из порошкового железа, такие кольца можно найти в компьютерных БП, размеры кольца внешний диаметр-20.5мм, внутренний 12мм и ширина кольца 6.6мм.
Обмотка намотана проводом 1мм, количество витков 60, в моём случае прОвода чуть-чуть не хватило и индуктивность получилась слегка меньше, но работает устройство хорошо. Размеры кольца особо не критичны,
главное соблюдать индуктивность и мотать обмотку проводом 1 -1.2 миллиметра.
Конденсатор С1 на 100- 220 микрофарад, очень желательно взять с низким внутренним сопротивлением, так как схема генератора фактически питается от данного конденсатора, а значит он постоянно будет накапливать и отдавать энергию, даже слегка греется во время работы.
Оба диода нужно взять с током в 5-10 ампер, можно обычные, но желательно взять импульсные диоды.
Вот печатная плата, скачать её можно в конце статье.
На самом зарядном, нужно выставить ток не более 2 ампер, иначе сгорит предохранитель на плате десульфатора. Кто-то скажет 2 ампера зарядного тока это мало?
-Да согласен, но не забываем, что у нас в большей степени не зарядка, а десульфатация.
В холостую прибор потребляет от источника питания ток всего в 100 миллиампер, его можно подключить к любому зарядному устройству с напряжением 12-15 вольт, ограничить ток на уровне 2 ампер и всё.
Ограничение можно сделать мощным резистором или лампочкой накаливания соответствующей мощности, подключённой в разрыв плюса питания.
Введите электронную почту и получайте письма с новыми поделками.
Можно использовать и более низковольтные блоки питания с напряжением 8-10 вольт, так как наша схема всё равно повышает начальное питание до нескольких десятков вольт.
Сколько должен длиться процесс десульфатации?
Автор данной схемы говорит, что в течение двух недель регулярной зарядки полностью можно восстановить старый аккумулятор и конечно же без проверки я бы не стал писать эту статью.
В наличии у меня несколько 6 вольтовых аккумуляторов на 10 амперчасов, которые не были в эксплуатации несколько лет, в течение пяти дней я регулярно заряжал один из этих аккумуляторов десульфатором, затем разряжал.
В самом начале подопытный аккумулятор отдавал ёмкость всего 700-800 миллиамперчасов, не помогла и заливка дистилированной воды, но десульфатор помог..
Спустя 5 дней аккумулятор отдаёт аж 4 ампера из 10, это я думаю очень хороший показатель.
Архив к статье; плата в формате .lay скачать.
Автономный Десульфатор для Кислотно-Свинцовых АКБ
Основной причиной старения аккумуляторной батареи при её длительной эксплуатации, заключающийся в снижении ёмкости, является отложение на зарядных пластинах сульфата свинца. Эти отложения препятствуют нормальным химическим реакциям при заряде-разряде АКБ. Интенсивность образования сульфатных отложений возрастает при неправильной эксплуатации аккумулятора, например, при постоянных недозарядах и глубоких разрядах.
Процесс удаления пагубных отложений с пластин АКБ называется его десульфатацией. Десульфатацию проводят как в периодических профилактических целях, так и для восстановления уже почти не годных к эксплуатации аккумуляторов. Сама очистка пластин производится тремя способами – механическим, химическим и электрическим. Наиболее безопасный и доступный метод для домашнего использования – электрический, о нём и пойдёт речь в сегодняшней статье.
Стоит отметить, что процесс это длительный и первые заметные результаты можно получить, применяя электрический метод десульфатации, от суток до месяца. Всё зависит от степени « засульфачивания » АКБ . Схема этого устройства – прототип китайского DIY -набора с Али , с небольшими изменениями и возможностью повышения мощности устройства. Эту схему с различными вариантами электронных компонентов можно найти в сети на различных тематических ресурсах. Китайские наборы всем хороши – красивая плата, рабочая схема, но они (китайцы) сами наступают на свои « грабли », применяя в них « левые » электронные компоненты непонятного происхождения, и как итог, на выходе получается дешёвое устройство с реальными параметрами, которые не соответствуют заявленным 🙂
Суть электрического метода десульфатации заключается в подаче на АКБ импульсов высокой частоты. Эти импульсы ВЧ с амплитудой выше чем напряжение на клеммах АКБ и силой тока, зависящей от схемного решения, проходя через АКБ разрушают структуру сульфатных отложений, которые частично растворяются и выпадают в виде осадка. Однозначного ответа какой должна быть частота импульсов, амплитуда и сила тока нет. В различных конструкциях, как заводских, так и самодельных, разброс от десятков герц до единиц килогерц при нескольких миллиампер или ампер…
Принцип работы схемы основан на свойстве индуктивности отдавать накопленный заряд при прерывании цепи прохождения тока через неё. Устройство не требует внешнего питания, которое берётся непосредственно с клемм АКБ .
На таймере DD1 собран генератор прямоугольных импульсов с частотой ≈1кГц . Питается DD1 от подключаемого аккумулятора. Для более стабильной работы и снижения пульсаций напряжения питания таймера включена цепь R3C1VD1 . С выхода таймера ( 3 ) управляющие импульсы поступают на затвор p-mosfet транзистора VT1 . При открытии VT1 ток протекает через индуктивности L1L2 . Изменение тока через индуктивности (открытие-закрытие VT1 ) вызывает возникновение ЭДС индукции. При закрытии VT1 накопленная энергия с L1L2 через диод VD1 и конденсатор C5 гасится на аккумулятор в виде короткого импульса амплитудой примерно 30 В . Далее цикл повторяется.
Сила тока определятся параметрами L1L2 . При использовании слаботочных индуктивностей типа RLB1314 , под которые и рассчитана печатная плата, она составляет порядка 0,5 А . Но схема, так сказать с запасом, и если изготовить L1L2 самому на тороидальных сердечниках с внешним диаметром ≈30 мм и проводом 0,8-1 мм , ориентируясь на индуктивность по измерительному прибору, то можно значительно повысить мощность устройства.
Но давать конкретные рекомендации по значению конечной мощности устройства я не возьмусь. Вопрос, во многом противоречивый и требующий изучения. В инете параметры подобных устройств сильно разнятся. Лично я пользуюсь этим устройством с указанным типом L1L2 в профилактических целях, когда появляются большие окна в эксплуатации авто. Устройство просто подключается на полностью заряженный АКБ и отключается при его полном разряде, который контролируется вручную.
Вариант печатной платы показан на рисунке сверху. Индуктивности L1L2 – RLB1314 , конденсатор C5 с низким значением ESR . Светодиод VD2 – индикация работы устройства. При повышении мощности устройства, путём замены индуктивностей, диод VD3 заменяется более сильноточным, например, BYW29-100 и крепится вместе с транзистором VT1 на небольшой теплоотвод в виде алюминиевой пластины.
Способы десульфатации кислотного автомобильного аккумулятора
После трехгодичного срока эксплуатации аккумулятор на автомобиле теряет свои характеристики, а произведенной зарядки хватает на пару дней. Виной тому засульфатация межпластинного пространства. Можно пойти в магазин и купить новый аккумулятор или реанимировать старый. Хоть десульфатация аккумулятора занимает длительное время, но при сезонной эксплуатации автомобиля времени для её проведения достаточно.
Причины сульфитации
При рассмотрении устройства автомобильного аккумулятора видно, что для получения и накопления электрической энергии используются пластины и электролит. Пластины изготавливаются из свинца, его оксида или с добавлением кальция. Электролит — это кислотная среда, слабый раствор серной кислоты.
В режиме разряда в аккумуляторной батарее протекает химическая реакция по образованию воды и сульфата свинца. Свинцовые пластины имеют перфорированную структуру для увеличения площади обтекания электролитом. Сульфат свинца оседает на поверхности пластин, тем самым снижая полезную площадь.
В процессе зарядки батареи химическая реакция протекает в обратном направлении, а во время езды на автомобиле процесс зарядки происходит не до конца. Постепенно слой за слоем частицы сульфата свинца, оседая на пластинах, кристаллизуются, образуя диэлектрический слой, что приводит кислотную батарею в негодность. Если свинец участвует в обратимой реакции, то кальциевый сульфат не распадается на ионы.
В качестве основных причин сульфатации можно выделить следующие:
- нет разряда аккумулятора;
- неполный заряд;
- постоянная эксплуатация.
Отсутствие пробок во время движения автомобиля не вызывает разряд аккумулятора. При ровной езде нагрев двигателя не происходит, то есть нет падения мощности, а следовательно, увеличенного потребления электричества. После вынужденной остановки водитель выключает ходовые огни, тем самым нагрузка на батарею снижается.
В случае ежедневной эксплуатации автомобиля при работе на средних оборотах батарея нуждается в сезонной принудительной зарядке. Неполные циклы приводят к снижению плотности электролита. В результате неправильной эксплуатации получается:
- падение емкости аккумулятора;
- уменьшение общей площади пластин;
- увеличение сопротивления и, как следствие, нагрев.
У автомобилистов накоплено много опыта, как устранить сульфатацию аккумулятора в гараже.
Методы очищения пластин аккумулятора
Десульфатицией называется процесс образования ионов соли и воды во время зарядки. После некоторого времени тока, подаваемого с генератора автомобиля, не выходит произвести десульфатацию естественным путем. Чтобы восстановить работоспособность, необходимо применить шоковую терапию.
Самым простым и действенным методом считается десульфатация аккумулятора зарядным устройством. Правда, дешевый зарядник для этого не подойдет. В продаже имеются приборы двойного назначения: зарядное устройство и десульфататор. Стоимость такого прибора значительная, поэтому не каждый его будет приобретать. Взять его можно на время у знакомых.
Работа этого прибора основана на функции многократной зарядки. Первоначально на батарею подается ток заданной величины на определенное время. Затем следует процесс разряда. Эти циклы постоянно повторяются до тех пор, пока батарея полностью не зарядится.
Этот метод самый безопасный и им необходимо воспользоваться дважды в год для необслуживаемых аккумуляторов. Они изготавливаются с добавками кальция.
Второй метод похож на первый, но на его реализацию потребуется значительное время. Он основан на способе многократной зарядки:
- первоначально следует снять АКБ;
- проверить уровень и плотность электролита (в идеале следует залить свежий);
- подключить зарядное устройство;
- на клеммы подать напряжение 14 В и малый ток 1 А на 8 часов;
- разрядить, подключив лампу ближнего света (разрядку произвести до 9 В);
- проверить плотность электролита;
- при значении 1,13 г/см3 напряжение снизить до 12 В, а ток повысить до 2 А, продолжать зарядку следует 8 часов;
- циклы проводить до тех пор, пока плотность не достигнет значения 1,27 г/см3.
Процесс может затянуться до двух недель, но в результате восстановление достигает 90%.
Третий метод более радикальный. Он предусматривает обратную зарядку аккумулятора. Для него понадобится приставка сварочного аппарата, но не инверторного. Рабочие режимы этого метода:
Батарею следует убрать с автомобиля. Выкрутить пробки. Подсоединить провода к клеммам в обратной последовательности, то есть плюс к минусу и наоборот. Подать питание на 30 минут. При таком режиме будет интенсивное газовыделение (кипение электролита).
После этого необходимо в банки залить нагретую чистую воду, чтобы вымыть получившийся осадок. Залить новую электропроводную жидкость. Произвести зарядку АКБ простым прибором в течение суток током 10−15 А. Но стоит помнить, что проведенная десульфация таким методом приводит к смене полюсов.
Снятие сульфатного слоя может быть произведено также посредством его растворения реактивами. В качестве растворителя выступает пищевая сода.
Первоначально требуется слить старый электролит. Затем необходимо приготовить раствор соды с дистиллированной водой. Концентрация его 1:6 (на 15 г соды необходимо 100 г воды). Объем раствора будет равен количеству слитой жидкости.
Раствор требуется нагреть до температуры 60 °C — 70 °C и залить в банки батареи. Чтобы удалить сульфатный слой, достаточно 30−40 минут. После этого аккумулятор требуется промыть теплой водой не менее трех раз. Залить свежий кислотный раствор и заряжать 24 часа током в 10 А. Далее 10 дней производить зарядку в течение 6 часов.
Чтобы провести десульфацию, также используют специальные составы. Таким является Триалон-Б, представляющий собой натрий этилендиаминтетрауксусный. Продается он в автомагазинах. Работы нужно проводить согласно инструкции. В отличие от пищевой соды, Триалон-Б — сильнодействующее вещество, а его реакция сопровождается активным выделением газов.
Самодельное устройство
Описанные методы производятся покупными приборами и составами. Но возможна и десульфатация аккумулятора своими руками. Для этого необходимо собрать электрическую схему, называемую моргалкой.
Сделать схему несложно. Чтобы получить десульфатирующее зарядное устройство своими руками, нужны автомобильные реле и лампочки 12 В. Лампы создают нагрузку и поддерживают режим разряда АКБ. Реле задает тон моргания — импульсы включения и отключения режимов. Отсюда и такое название.
Режимы работы десульфатора своими руками следующие:
- ток не должен превышать 10% указанной емкости;
- напряжение находится в диапазоне 13,1−13,4 В.
Схема работает со следующей периодичностью: заряд током 3 А длится 3 секунды, затем разряд нагрузкой в 1 А продолжается 4,3 секунды. В это время индикаторные лампочки загораются и гаснут. Этот метод позволит продлить на некоторое время жизнь автомобильного аккумулятора.
Источники:
http://xn--100–j4dau4ec0ao.xn--p1ai/sxema-dlya-vosstanovleniya-avtomobilnogo-akkumulyatora/
http://zen.yandex.ru/media/id/5c573873f583af00ad204474/5d85ae42aad43600aead6c33
http://pochini.guru/sovety-mastera/sposobyi-desulfatatsii-kislotnogo-akkumulyatora