Балансировочное зарядное устройство для Li-ion – Своими Руками

Балансировочное зарядное устройство для Li-ion, Li-pol

При переделке шуруповерта на литий-ион, я его заряжаю через переходной провод с помощью Turnigy.

Переделка простая, но вот зарядное доступно не каждому.
Решил сделать простое и надежное балансировочное зарядное устройство. Большинство деталей найдется у любого мастера, а ряд деталей доступен для заказа из Китая, ну или можно купить в магазине радиотоваров.

Инструменты и материалы:

– корпус для устройства;
– платы зарядок для планшета;
– контроллера для литий-иона;
– разъем со штырями;
– разъем с гнездами;
– выключатель;
– провода, паяльник, клеевой пистолет.

Монтировать зарядное устройство буду в корпусе сгоревшего роутера. В процессе монтажа схемы, понял, что выбрал маленький корпус. Процесс сборки немного усложнился, но я с поставленной задачей справился, но об этом дальше. Плата роутера может еще для чего сгодится.

Для каждого канала, я применю платы от зарядок. Количество плат, можно применить и большего количества или меньшего. У меня три канала и зарядок тоже три.

Следить за процессом заряда будут контроллеры заряда для литий-иона. Применить можно и с BMS, но он в данном случае не нужен. У меня одна плата новая, а две со спаянными разъемами(куда то применял их). Разъем абсолютно не мешает работе и процессу сборки.

На заднюю панель роутера, нужно вырезать полоску пластика. У меня стеклотекстолит толщиной полтора миллиметра. В полоске вырезаем окошки под выключатель питания и разъем балансировки.

Разъем я применил от старого жесткого диска, на 4 контакта. Выключатель снял со сгоревшего блока ATX. Так же просверлил отверстия под винты. для крепления планки. Позже просверлю отверстие под сетевой шнур. Разъем приклеил на соду с супер клеем.

Контроллеры заряда будут установлены в корпусе и индикации не будет видно. Для этого я взял разноцветные светодиоды. Красный отображает процесс заряда, а зеленый его окончание.

Чтоб подпаять светодиоды к плате, я применил отрезки шлейфа IDE.

Платы контроллеров нужно соединить с платами зарядок. Я соединил их луженым проводом на 0.5 мм. Получилось довольно жестко.

Шлейфы со светодиодами припаял вместо штатных светодиодов контроллеров. Сразу бросается в глаза, что зеленый светодиод уменьшился в размере. Я допустил ошибку и не проверил светодиоды, они оказались сгоревшими. Припаял какие попались под руку.

Платы приклеил на термо клей. Держатся отлично, пробовал кидая на пол)) Перед приклеиванием подпаял сетевые провода.

Просверлил отверстие под сетевой шнур. Распаял один из проводов на выключатель. Второй сетевой соединил вместе с оставшимися проводами от плат зарядок.

Светодиоды приклеил на места, где раньше были установлены светодиоды платы роутера. Клеил на термо клей.

Выходные провода контроллеров соединил последовательно. Плюс припаял на первый контакт. На второй контакт, припаял соединение проводов минуса первого и плюса второго контроллеров. Далее распаиваем остальные провода по порядку.

Одеваем крышку и прикручиваем. Откладываем в сторону зарядное устройство и распаиваем зарядный провод.

Провода применил со сгоревшего блока питания. Распаял соответственно доработанного аккумулятора шуруповерта. По схеме провода распаиваются по порядку от первого к четвертому. Места спайки изолирую термоусадкой.

Подключаем переходной провод к аккумулятору и к зарядному устройству. В процессе зарядки горят красные светодиоды. Когда загорятся зеленый, аккумулятор считается заряженным.

Данное зарядное устройство можно применить для заряда аккумуляторов, где установлены 3 элемента, то есть 3S. Квадрокоптеры, фонари, катера. Я же планирую переделать еще некоторые устройства, где будут три элемента последовательно.

Видео о сборке зарядного устройства:

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Читать еще:  Держатель для шуруповерта из ПВХ трубы - Своими Руками

Балансир для li-ion аккумуляторов своими руками. Схема и описание

Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.

Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.

Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.

Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.

С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.

Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.

Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.

Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.

Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.

Простой балансир для li-ion аккумуляторов

Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.

Выходом из данной ситуации может быть применение популярного регулируемого стабилитрона TL431. Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.

Читать еще:  Складной фотобокс своими руками - Своими Руками

Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).

На резисторах R1 и R2 собран делитель напряжения. Их сопротивление таково, что при достижении напряжения заряда на аккумуляторе 4,2В на управляющем входе TL431 должно появиться 2,5 вольта. При достижении напряжении на управляющем выводе TL431 2,5 вольт, регулируемый стабилитрон начнет проводить ток, открыв тем самым транзистор. Транзистор зашунтирует цепь питания, и напряжение не будет подниматься более 4,2 вольт.

Так как через транзистор будет протекать большой ток, то следует выбрать мощный транзистор, у которого мощность рассеивания не ниже:

где U — напряжение заряда, I – ток заряда.

Например, при токе заряда 0,5А транзистор должен иметь рассеиваемую мощность не менее 4,2В*0,5А = 2,1Вт. Так же желательно установить его на теплоотвод.

Ниже приведен список сопротивлений резисторов R1 и R2 на разное напряжение заряда:

22к + 33к => 4,166 В

15к + 22к => 4,204 В

47к + 68к => 4,227 В

27к + 39к => 4,230 В

39K + 56к => 4,241 В

33к + 47к => 4,255 В

Резистор R3 – нагрузочное сопротивление базы транзистора. Его сопротивление может быть 470Ом…1кОм.

Балансировочное зарядное устройство для Li-ion – Своими Руками

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650, на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно – собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы – параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя – нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием “лишнего” электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd – это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры – так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

Читать еще:  Как подключить двигатель по схеме «звезда-треугольник» - Своими Руками

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое “балансиром”. Простейший тип балансира – это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A – все они ведут себя одинаково.

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Схема устройства для балансировки аккумуляторов

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2. D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания – смотрите далее.

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора – надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения – зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Источники:

http://usamodelkina.ru/11317-balansirovochnoe-zarjadnoe-ustrojstvo-dlja-li-ion-li-pol.html
http://www.joyta.ru/10092-balansir-dlya-li-ion-akkumulyatorov-svoimi-rukami-sxema-i-opisanie/
http://radioskot.ru/publ/zu/zarjadka_neskolkikh_akkumuljatorov/8-1-0-909

Ссылка на основную публикацию
Статьи на тему: